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Abstract—This paper considers a queuing system with repeated calls and heterogeneous cus-
tomers — a multiclass retrial queue. There are a limited number of arrival Poisson processes
and one server. If the server is idle at an arrival moment, a customer starts its service with
general distribution service time. If the server is busy, a customer goes to an orbit where it
performs a random delay distributed exponentially. For the model study, the method of the
marginal asymptotic-diffusion analysis under an equivalent long delay of all classes customers
in the orbit. As the result, the asymptotic stationary marginal probability distributions of the
number of each class customers in the orbit are obtained.

Keywords : multiclass retrial queueing system, marginal asymptotic-diffusion analysis, long delay

DOI: 10.31857/S0005117925030046

1. INTRODUCTION

Retrial queueing system (RQ) is a class of queueing systems with repeated calls, which is the
most widespread mathematical model in IT-systems. The appearance of such models as a new
direction of queuing theory (QT) is associated with the development of telecommunication and
information technologies. It has been shown that classical models of queuing theory are not suitable
for describing some systems where repeated attempts occur. As an example in telephone systems,
if the first attempt to call is unsuccessful, a subscriber tries to call again after some random time.
Similarly, in communication networks, if a package is transmitted unsuccessfully (due to errors,
collisions, server unavailability), there is some delay before a new attempt of transmission. In [1, 2],
there are some examples of retrial queuing models application to call centers, cellular networks,
computer networks, distributed computing centers, etc.

The detailed description of RQ models is presented in [1, 3]. Despite of the large number of
studies, models with several types of customers are studied extremely rarely. The reason is more
difficult analytical study of retrial queueing models then other classes of queueing theory (there are
analytical formulas only for the simplest models). Also, the problem dimension grows with increas-
ing of the number of classes, so for RQ with N classes it is necessary to study N + 1-dimensional
random process. In case of matrix methods applying [4, 5], the dimension growth has a power law.
The same difficulties arise in numerical methods and simulation [6, 7], but some authors propose
certain computational optimization algorithms [8].

Often in real communication networks, information is heterogeneous [9, 10]. Different types of
transmitted data or types of computational resource requests need different strategies and charac-
teristics of its service. Thus, the study of heterogeneous (or multiclass) models of queuing theory
is an urgent scientific problem.
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236 NAZAROV, FEDOROVA

Multiclass RQs are studied by scientific groups supervised by E. Morozov [11–13] and A. Krish-
namoorthy [14]. Also RQs with several arrival processes are considered in some papers by B. Kim
[15, 16], Y. Shin [17], S. Stepanov [8, 18], etc. Most of the papers [11–13, 15, 16] are devoted to
stability analysis of systems (both classical RQ and RQ with constant retrial rate). However, there
are no expressions for the probability distributions of the number of customers in the system in
this studies, usually only some average characteristics are derived. Of course, mean values and
stability analyzing are important in communication networks, but variances and especially types of
distributions, gives us a more complete picture. Especially in information systems, where situations
of the system overload or loss of information packages are highly undesirable.

In the paper, the original method of the marginal asymptotic-diffusion analysis is proposed for
a multiclass retrial queue. This method is the development of the asymptotic-diffusion method
outlined in [19, 20] to case of multi-dimensional random processes. The paper is an extension of
paper [21] to the case of general service time laws.

2. MATHEMATICAL PROBLEM

Let us consider a multiclass RQ of Mn/GIn/1 type. There are N independent Poisson arrival
processes of customers with rates λn, where n = 1, N (so N classes of customers). There is one
server. If the server is idle, an arrival nth class customer starts its servicing during random time
with cumulative distribution function Bn(x). It is assumed that the given distributions have finite
moments of the first and the second orders. If an arrival customer finds the busy server, it goes
to the orbit, where it performs a random delay. The delay time is distributed exponentially with
rate σn for the nth class customer. After the delay, a customer makes a repeated attempt to get
the service. If the server is idle the service begins, otherwise the customer returns to the orbit. All
customers in the orbit act independently of each other, i.e., there is the multiple random access
protocol. Arrival intervals, service times and delays laws of each class customers are mutually
independent. The model under consideration is schematically depicted in Figure.

Note that it does not matter to consider one common orbit for all classes of customers (but with
different parameters) or several orbits for each class. It is important to distinguish a number of
customers of each class in the system at fixed time moment.
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Multiclass RQ of Mn/GIn/1 type.
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Let in(t) be a random processes of the number of the nth class customers in the orbit, n = 1, N ,
k(t) define states of the server as follows: k(t) = 0, if the server is free, k(t) = n, if the nth class
customer is servicing and z(t) be the remaining servicing time for the current customer on the
server.

We denote by P{k(t) = 0, i1(t) = i1, i2(t) = i2, . . . , iN (t) = iN} = P (0, i, t) and P{k(t) = k,
i1(t) = i1, i2(t) = i2, . . . , iN (t) = iN , z(t) < z} = P (k, i, z, t) the probability that the server has
state k and there are i = {i1, . . . , iN} customers in the orbit at time t, and the remaining ser-
vicing time is less than z. Process {k(t), i(t), z(t)} is multidimensional continuous-time Markov
chain. Let us write the following system of Kolmogorov equations for probability distributions
P (0, i, t) and P (k, i, t)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P (0, i, t)

∂t
=

N∑
n=1

∂P (n, i, 0, t)

∂z
−

(
N∑

n=1

λn +
N∑

n=1

inσn

)
P (0, i, t),

∂P (k, i, z, t)

∂t
=

∂P (k, i, z, t)

∂z
− ∂P (k, i, 0, t)

∂z
−

N∑
n=1

λnP (k, i, z, t)

+λkP (0, i, t)Bk(z) + (ik + 1)σkP (0, i + ek, t)Bk(z) +
N∑

n=1

λnP (k, i− en, z, t),

(1)

where ∂P (k,i,0,t)
∂z = ∂P (k,i,z,t)

∂z

∣∣∣
z=0

, ek is vector of 1 ×N size with unit kth element and zero others,

k = 1, N .

Let us introduce the partial characteristic functions

H(0,u, t) =
∞∑

i1=0

. . .
∞∑

iN=0

eju1i1 · . . . · ejuN iNP (0, i, t),

H(k,u, z, t) =
∞∑

i1=0

. . .
∞∑

iN=0

eju1i1 · . . . · ejuN iNP (k, i, z, t).

Then system (1) is rewritten as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H(0,u, t)

∂t
=

N∑
n=1

∂H(n,u, 0, t)

∂z
−H(0,u, t)

N∑
n=1

λn +
N∑

n=1

jσn
∂H(0,u, t)

∂un
,

∂H(k,u, z, t)

∂t
=

∂H(k,u, z, t)

∂z
− ∂H(k,u, 0, t)

∂z
+

N∑
n=1

λn(e
jun − 1)H(k,u, z, t)

+ λkH(0,u, t)Bk(z)− jσke
−juk ∂H(0,u,t)

∂uk
Bk(z), k = 1, N.

(2)

The direct solving of system (2) is quite difficult, so we propose an original method of the
marginal asymptotic-diffusion analysis for its study. This method was developed by the authors
and tested for a simpler model in [21], where a fairly high accuracy of the method was shown by
comparing with its simulation, and this paper is an extension of research to the case of general
service laws.

3. MARGINAL ASYMPTOTIC-DIFFUSION ANALYSIS

The method of the marginal asymptotic-diffusion analysis is a development of the method of
asymptotic-diffusion analysis [19] to the case of multidimensional random processes. The considered
asymptotic condition is a condition of equivalent long delays of customers in the orbit.
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The proposed method contains several stages, which will be presented as subsections:

1) derivation of “marginal” asymptotic equations for one-dimensional process in(t) (the number
of customers of the “marked” class);

2) deriving of the asymptotic characteristics: means of each class customers numbers and sta-
tionary probabilities of the server states;

3) implementation of the asymptotic-diffusion analysis for marked process in(t).

Note that the using of the marginal asymptotic method and finding the marginal characteristics
of the model for each class does not mean that processes in(t), n = 1, N are independent. This
method is a forced measure due to the impossibility of the multidimensional random process study-
ing by known analytical methods, but it allows us to find all characteristics of one-dimensional
processes.

3.1. Marginal Asymptotic Equations

The first stage of the proposed method consists in a deriving asymptotic equations for the
marginal probability distribution of the number of the marked class customers in the orbit. So let
us mark the nth class and study in(t) as the marked process.

Any asymptotic method includes an introduction of an infinitesimal value. In the further study,
we will suppose that delay rates σν = γνσ for ν = 1, N, ν �= n, where σ −→ 0. In this way, there is
the asymptotic condition for a long delay condition or a equivalent increasing delay in the orbit for
all classes customers.

By denoting σ = ε, we introduce the following substitutions

uv = εwv, ν = 1, N, ν �= n; un = u; w(n) = {w1, . . . , wn−1, u, wn+1, . . . , wN};

H(0,u, t) = F (0,w(n), t), H(k,u, z, t) = F (k,w(n), z, t).

From system (2), we obtain the following equations under ε −→ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F (0,w(n), t)

∂t
= −F

(
0,w(n), t

) N∑
v=1

λν +
N∑
ν=1
ν �=n

jγν
∂F

(
0,w(n), t

)
∂wν

+ jσn
∂F

(
0,w(n), t

)
∂un

+
N∑
ν=1

∂F
(
ν,w(n), 0, t

)
∂z

,

∂F
(
k,w(n), z, t

)
∂t

=
(
λn

(
ejun − 1

))
F

(
k,w(n), z, t

)
+

∂F
(
k,w(n), z, t

)
∂z

−
∂F

(
k,w(n), 0, t

)
∂z

+ λkF
(
0,w(n), t

)
Bk(z)− jγk

∂F
(
0,w(n), t

)
∂wk

Bk(z), k �= n,

∂F
(
n,w(n), z, t

)
∂t

=
(
λn

(
ejun − 1

))
F

(
n,w(n), z, t

)
+

∂F (n,w(n), z, t)

∂z

−
∂F

(
n,w(n), 0, t

)
∂z

+ λnF
(
0,w(n), t

)
Bn(z)− jσne

−jun
∂F

(
0,w(n), t

)
∂un

Bn(z).

(3)
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From the form of equations (3), it can be concluded that the solution of this system can be
written as follows

F (0,w(n), t) = Hn(0, un, t)× exp

⎧⎨⎩∑
ν �=n

jwνxν

⎫⎬⎭ ,

F (k,w(n), z, t) = Hn(k, un, z, t)× exp

⎧⎨⎩∑
ν �=n

jwνxν

⎫⎬⎭ ,

(4)

where xn are unknown parameters and functionsHn(0, un, t) andHn(k, un, z, t) satisfy the following
system of differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Hn(0, un, t)

∂t
= −Hn(0, un, t)

⎛⎜⎜⎝ N∑
ν=1

λν +
N∑
ν=1
v �=n

γνxν

⎞⎟⎟⎠
+ jσn

∂Hn(0, un, t)

∂un
+

N∑
ν=1

∂Hn(ν, un, 0, t)

∂z
,

∂Hn(k, un, z, t)

∂t
= λn(e

jun − 1)Hn(k, un, z, t) +
∂Hn(k, un, z, t)

∂z

− ∂Hn(k, un, 0, t)

∂z
+Hn(0, un, t)(λk + γkxk)Bk(z), k �= n,

∂Hn(n, un, z, t)

∂t
= λn(e

jun − 1)Hn(n, un, z, t) +
∂Hn(n, un, z, t)

∂z

− ∂Hn(ν, un, 0, t)

∂z
+ λnHn(0, un, t)Bn(z)− jσne

−jun
∂Hn(0, un, t)

∂un
Bn(z).

(5)

Unknown functions Hn(k, un, z, t) have the meaning of the asymptotic partial characteristic func-
tions of the number of customers of the marked class in the orbit. By solving system (5), we can
obtain the marginal distributions for each class of customers numbers. However, these equations
contain unknown parameters xk, which defines the asymptotic means. In the next paragraph, we
will derive expressions for them.

3.2. Asymptotic Means

For finding of parameters xk, k = 1, N , let us return to system (2) and write it under the steady
state. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=1

∂H(n,u, 0)

∂z
−H(0,u)

N∑
n=1

λn +
N∑

n=1

jσn
∂H(0,u)

∂un
= 0,

∂H(k,u, z)

∂z
− ∂H(k,u, 0)

∂z
+

N∑
n=1

λn(e
jun − 1)H(k,u, z)

+λkH(0,u)Bk(z)− jσke
−juk

∂H(0,u)

∂uk
Bk(z) = 0, k = 1, N.

(6)

Summarizing equations for all k = 0, N and taking z −→ ∞, we obtain the following additional
equation called as a consistent equation

N∑
n=1

(ejun − 1)

(
λn

N∑
k=1

H(k,u) + jσke
−juk

∂H(0,u)

∂uk

)
= 0. (7)
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Let us introduce the asymptotic substitutions in (6) and (7)

σn = γnσ, σ = ε, un = εwn, H(0,u) = F (0,w, ε), H(k,u, z) = F (k,w, z, ε).

Thus we obtain the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=1

∂F (n,w, 0, ε)

∂z
− F (0,w, ε)

N∑
n=1

λn +
N∑

n=1

jγn
∂F (0,w, ε)

∂wn
= O(ε),

∂F (k,w, z, ε)

∂z
− ∂F (k,w, 0, ε)

∂z
+

N∑
n=1

λn(e
jεwn − 1)F (k,w, z, ε)

+ λkF (0,w, ε)Bk(z)− jγke
−jεwk

∂F (0,w, ε)

∂wk
Bk(z) = O(ε), k = 1, N,

N∑
n=1

(ejεwn − 1)

(
λn

N∑
k=1

F (k,w, z, ε) + jγke
−jεwk

∂F (0,w, ε)

∂wk

)
= O(ε).

(8)

After some mathematical transformations under ε −→ 0, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=1

∂F (n,w, 0)

∂z
− F (0,w)

N∑
n=1

λn +
N∑

n=1

jγn
∂F (0,w)

∂wn
= 0,

∂F (k,w, z)

∂z
− ∂F (k,w, 0)

∂z
+ λkF (0,w)Bk(z)− jγk

∂F (0,w)

∂wk
Bk(z) = 0, k = 1, N,

N∑
n=1

jwn

(
λn

N∑
k=1

F (k,w, z) + jγk
∂F (0,w)

∂wk

)
= 0.

(9)

The solution of the system above has the form

F (0,w) = r0 × exp

{
N∑

n=1

jwnxn

}
, F (k,w, z) = rk(z)× exp

{
N∑

n=1

jwnxn

}
.

From system (9), we obtain that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=1

r′n(0)− r0

N∑
n=1

(λn + γnxn) = 0,

r′k(z)− r′k(0) + r0Bk(z)(λk + γkxk) = 0, k = 1, N,

λn

N∑
k=1

rk(z)− γnxnr0 = 0, n = 1, N,

(10)

where r′n(0) =
drn(z)
dz

∣∣∣
z=0

.

Let us denote κn = λn + γnxn. Then the following expressions are derived from system (10)

rk(z) = r0κk

z∫
0

(1−Bk(x))dx, rk = λkb
(1)
k , (11)

where κk = λk/r0, k = 1, N , b
(1)
k =

∫∞
0 (1−Bk(x))dx and r0 is defined from the normalization

condition as

r0 = 1−
N∑
k=1

rk or r0 =

(
1 +

N∑
k=1

κkb
(1)
k

)−1

. (12)

So the asymptotic means of each class customers numbers are mk = (κk−λk), where κk = λk/r0.
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3.3. Asymptotic-Diffusion Analysis

Let us return to equations for the marked process (5). We write the consistent equation by
summing all equations for z −→ ∞.

∂Hn(un, t)

∂t
= (ejun − 1)

(
λn

N∑
k=1

Hu(k, un, t) + jσne
−jun

∂Hn(0, un, t)

∂un

)
. (13)

3.3.1. First Asymptotics. Let us denote

σn = ε, σnt = εt = τ, un = εw,

Hn(0, un, t) = Fn(0, w, τ, ε), Hn(k, un, z, t) = Fn(k,w, τ, z, ε).

We substitute the notations into equations (5).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂Fn(0, w, τ, ε)

∂τ
= −Fn(0, w, τ, ε)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

κv

⎞⎟⎟⎠
+ j

∂Fn(0, w, τ, ε)

∂w
+

N∑
v=1

∂Fn(v,w, τ, 0, ε)

∂z
,

ε
∂Fn(k,w, τ, z, ε)

∂τ
= λn(e

jεw − 1)Fn(k,w, τ, ε) +
∂Fn(k,w, τ, z, ε)

∂z

− ∂Fn(k,w, τ, 0, ε)

∂z
+ Fn(0, w, τ, ε)κkBk(z), k �= n,

ε
∂Fn(n,w, τ, z, ε)

∂τ
= λn(e

jεw − 1)Fn(n,w, τ, z, ε) +
∂Fn(n,w, τ, z, ε)

∂z

− ∂Fn(n,w, τ, 0, ε)

∂z
+ λnFn(0, w, τ, ε)Bn(z)− je−jεw ∂Fn(0, w, τ, ε)

∂w
Bn(z).

(14)

From equation (13), we have:

ε
N∑
k=0

∂Fn(k,w, τ, ε)

∂τ
= (ejεw − 1)

(
λn

N∑
k=1

Fn(k,w, τ, ε) + je−jεw ∂Fn(0, w, τ, ε)

∂w

)
. (15)

Under limit condition ε −→ 0, equations (14) are written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Fn(0, w, τ)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

κv

⎞⎟⎟⎠+ j
∂Fn(0, w, τ)

∂w
+

N∑
v=1

∂Fn(v,w, 0, τ)

∂z
= 0,

∂Fn(k,w, z, τ)

∂z
− ∂Fn(k,w, 0, τ)

∂z
+ Fn(0, w, τ)κkBk(z) = 0, k �= n,

∂Fn(n,w, z, τ)

∂z
− ∂Fn(n,w, 0, τ)

∂z
+ λnFn(0, w, τ)Bn(z)− j

∂Fn(0, w, τ)

∂w
Bn(z) = 0.

(16)
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The form of equations (16) lets us make the conclusion that functions Fn(0, w, τ) and
Fn(k,w, z, τ) can be written as

Fn(0, w, τ) = R0(x)e
jw·x(τ),

Fn(k,w, z, τ) = Rk(x, z)e
jw·x(τ),

(17)

where index n (the number of the marked class) is missed in notations R0(x) and Rk(x, z), however,
we need keep in the mind that the expressions for these functions will differ for each class. Further,
to simplify the expressions, we will write x instead of x(τ).

By substituting (17) into (16), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
v=1

∂Rv(x, 0)

∂z
= R0(x)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

κv + x

⎞⎟⎟⎠ ,

∂Rk(x, z)

∂z
=

∂Rk(x, 0)

∂z
−R0(x)κkBk(z) = 0, k �= n,

∂Rn(x, z)

∂z
=

∂Rn(x, 0)

∂z
−R0(x)Bk(z)(λn + x).

(18)

It is easy to derive that

Rk(x, z) = R0(x)κk

z∫
0

(1−Bk(x))dx, k �= n,

Rn(x, z) = R0(x)(λn + x)

z∫
0

(1−Bn(x))dx.

(19)

For z −→ ∞, we obtain

Rk(x) = R0(x)κkb
(1)
k , k �= n,

Rn(x) = R0(x)(λn + x)b(1)n ,

(20)

where R0(x) is defined by normalization condition

R0(x) =

⎛⎜⎜⎝1 + (λn + x)b(1)n +
N∑
k=1
v �=n

κkb
(1)
k

⎞⎟⎟⎠
−1

. (21)

Let us return to equation (15). We perform some transformations and write equations under
ε −→ 0.

N∑
k=0

∂Fn(k,w, τ)

∂τ
= jw

(
j
∂Fn(0, w, τ)

∂w
+ λn

N∑
k=1

Fn(k,w, τ)

)
.

Substituting (17), we finally obtain that the asymptotic mean number of customers of the
nth class in the orbit x(τ) is determined by the equation

dx(τ)

dτ
= a(x(τ)),

where

a(x) = λn(1−R0(x)) −R0(x)x (22)

has the meaning of the drift coefficient of the random process under study.
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3.3.2. Second Asymptotics. In system (5), we make substitutions

Hn(0, un, t) = H(2)
n (0, un, t) exp

{
jun
σn

x(σnt)

}
,

Hn(k, un, z, t) = H(2)
n (k, un, z, t) exp

{
jun
σn

x(σnt)

}
.

Further, to simplify the expressions, we will write x instead of x(σnt).

So we derive the following system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H
(2)
n (0, un, t)

∂t
+ juna(x)H

(2)
n (0, un, t)

= −H
(2)
n (0, un, t)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

κv

⎞⎟⎟⎠+ jσn
∂H

(2)
n (0, un, t)

∂un

−xH
(2)
n (0, un, t) +

N∑
k=1

∂H
(2)
n (k, un, 0, t)

∂z
,

∂H
(2)
n (k, un, z, t)

∂t
+ juna(x)H

(2)
n (k, un, z, t)

= λn(e
jun − 1)H

(2)
n (k, un, z, t) +

∂H
(2)
n (k, un, z, t)

∂z

− ∂H
(2)
n (k, un, 0, t)

∂z
+H(2)

n (0, un, t)Bk(z)κk, k �= n,

∂H
(2)
n (n, un, z, t)

∂t
+ juna(x)H

(2)
n (n, un, z, t)

= λn(e
jun − 1)H(2)

n (n, un, z, t) +
∂H

(2)
n (n, un, z, t)

∂z

− ∂H
(2)
n (n, un, 0, t)

∂z
+ λnH

(2)
n (0, un, t)Bn(z)

−jσne
−jun

∂H
(2)
n (0, un, t)

∂un
Bn(z) + e−junH(2)

n (0, un, t)xBn(z).

(23)

From consistent equation (6), we have an additional equation

∂H
(2)
n (un, t)

∂t
+ juna(x)H

(2)
n (un, t)

= (ejun − 1)

(
λn

N∑
k=1

H(2)
n (k, un, t) + jσne

−jun
∂H

(2)
n (0, un, t)

∂un
− e−junH(2)

n (0, un, t)x

)
.

(24)

Let us denote

σn = ε2, σnt = ε2t = τ, un = εw,

H(2)
n (0, un, t) = F (2)

n (0, w, τ, ε), H(2)
n (k, un, z, t) = F (2)

n (k,w, z, τ, ε).
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From equation (23), after some transformations we obtain the following asymptotic equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2
∂F

(2)
n (0, w, τ, ε)

∂τ
+ jεwa(x)F (2)

n (0, w, τ, ε)

= −F
(2)
n (0, w, τ, ε)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

κv

⎞⎟⎟⎠+ jε
∂F

(2)
n (0, w, τ, ε)

∂w

− xF
(2)
n (0, w, τ, ε) +

N∑
k=1

∂F
(2)
n (k,w, 0, τ, ε)

∂z
+O(ε2),

ε2
∂F

(2)
n (k,w, τ, z, ε)

∂τ
+ jεwa(x)F (2)

n (k,w, τ, z, ε)

= λn

(
jεw +

(jεw)2

2

)
F (2)
n (n,w, z, τ, ε) + F (2)

n (0, w, τ, ε)Bk(z)κk

+
∂F

(2)
n (k,w, z, τ, ε)

∂z
− ∂F

(2)
n (k,w, 0, τ, ε)

∂z
+O(ε2), k �= n,

ε2
∂F

(2)
n (n,w, τ, z, ε)

∂τ
+ jεwa(x)F (2)

n (n,w, τ, z, ε)

= λn

(
jεw +

(jεw)2

2

)
F (2)
n (n,w, z, τ, ε)

+ λnF
(2)
n (0, w, τ, ε)Bn(z) +

∂F
(2)
n (n,w, z, τ, ε)

∂z

− ∂F
(2)
n (n,w, 0, τ, ε)

∂z
− jε(1 − jεw)

∂F
(2)
n (0, w, τ, ε)

∂w
Bn(z)

+

(
1− jεw +

(jεw)2

2

)
F (2)
n (0, w, τ, ε)xBn(z) +O(ε2).

(25)

From equation (24), we have

ε2
∂F

(2)
n (w, τ, ε)

∂τ
+ jεwa(x)F (2)

n (w, τ, ε) =

(
jεw +

(jεw)2

2

)

×
(
λn

N∑
k=1

F (2)
n (k,w, τ, ε) + jε(1 − jεw)

∂F
(2)
n (0, w, τ, ε)

∂w

− x

(
1− jεw +

(jεw)2

2

)
F (2)
n (0, w, τ, ε)

)
.

(26)

Let us find the solution of system (25)–(26) in the following form

F (2)
n (0, w, τ, ε) = Φ(w, τ)(R0(x) + jwεf0(x)) +O(ε2),

F (2)
n (k,w, z, τ, ε) = Φ(w, τ)(Rk(x, z) + jwεfk(x, z)) +O(ε2).

(27)
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Substituting the expressions above in system (25)–(26) and taking into account (16) and (18),
we obtain the following equations after some transformations and under ε −→ 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−f0(x)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

κv + x

⎞⎟⎟⎠+
N∑
k=1

∂fk(x, 0)

∂z
= a(x)R0(x)−R0(x)

∂Φ(w, τ)/∂w

wΦ(w, τ)
,

∂fk(x, z)

∂z
− ∂fk(x, 0)

∂z
+ f0(x)κkBk(z) = Rk(x, z)(a(x) − λn), k �= n,

f0(x)(λn + x) +
∂fn(x, z)

∂z
− ∂fn(x, 0)

∂z

= Rn(x, z)(a(x) − λn) + xR0(x)Bn(z) +R0(x)
∂Φ(w, τ)/∂w

wΦ(w, τ)
Bn(z).

(28)

Comparing equations (28) with (18) and using the principle of superposition, we conclude that
the solution of (28) can be written as

f0(x) = CR0(x) + g0(x)− φ0(x)
∂Φ(w, τ)/∂w

wΦ(w, τ)
,

fk(x, z) = CRk(x, z) + gk(x, z)− φk(x, z)
∂Φ(w, τ)/∂w

wΦ(w, τ)
,

(29)

where C is normalizing constant and functions gk(x, z) and φk(x, z) are defined by the following
equations systems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−φ0(x)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

κv + x

⎞⎟⎟⎠+
N∑
k=1

∂φk(x, 0)

∂z
= R0(x),

∂φk(x, z)

∂z
− ∂φk(x, 0)

∂z
+ φ0(x)κkBk(z) = 0, k �= n,

∂φn(x, z)

∂z
− ∂φn(x, 0)

∂z
+ (λn + x)φ0(x)Bn(z) = −R0(x)Bn(z),

(30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−g0(x)

⎛⎜⎜⎝λn +
N∑
v=1
v �=n

+κv + x

⎞⎟⎟⎠+
N∑
k=1

∂gk(x, 0)

∂z
= a(x)R0(x),

∂gk(x, z)

∂z
− ∂gk(x, 0)

∂z
+ g0(x)κkBk(z) = Rk(x, z)(a(x) − λn), k �= n,

∂gn(x, z)

∂z
− ∂gn(x, 0)

∂z
+ g0(x)(λn + x)Bn(z) = Rn(x, z)(a(x) − λn) + xR0(x)Bn(z).

(31)

For uniqueness of the solutions, we supplement the systems with conditions
N∑
k=1

φk(x) = −φ0(x)

and
N∑
k=1

gk(x) = −g0(x). Then it can be written that

φn(x, z) = φ0(x)

z∫
0

(λn(1−Bn(y)− x))dy, φk(x, z) = φ0(x)κk

z∫
0

(1−Bk(y))dy, k �= n,

where under z −→ ∞
φk(x) = R′

k(x). (32)
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In the same way from the system (31), we obtain:

gk(x, z) = g0(x)κk

z∫
0

(1−Bk(y))dy + (a(x)− λn)

z∫
0

(Rk(x, y)−Rk(x))dy, k �= n,

gn(x, z) = (λn + x)g0(x)

z∫
0

(λn(1−Bn(y))dy

+ (a(x)− λn)

z∫
0

(Rn(x, y)−Rn(x))dy − xR0(x)

z∫
0

((1−Bn(y))dy,

where

g0(x) = R0(x)

(λn − a(x))((λn + x)b
(2)
n + 2xb

(1)
n + (λn − a(x))

N∑
k=1
v �=n

κkb
(2)
k

2

⎛⎜⎜⎝1 + (λn + x)b
(1)
n +

N∑
k=1
v �=n

κkb
(1)
k

⎞⎟⎟⎠
, (33)

and b
(1)
k =

∫∞
0 xdBk(x), b

(2)
k =

∫∞
0 x2dBk(x).

The last step of the asymptotic analysis is finding of function Φ(w, τ). For this, we substitute
substitutions (27) into equation (26). After some transformations, we write the resulting equation
under ε −→ 0.

∂Φ(w, τ)

∂τ
=

(jw)2

2
Φ(w, τ)

×
(
a(x) + 2x(R0(x)− g0(x))− 2λng0(x) + (2φ0(x)(x+ λn) + 2R0(x))

∂Φ(w, τ)

∂w

1

wΦ(w, τ)

)
.

In this way, we derive that Φ(w, τ) defines by the equation

∂Φ(w, τ)

∂τ
= w

∂Φ(w, τ)

∂w
a′(x) +

(jw)2

2
Φ(w, τ)b(x), (34)

where

b(x) = a(x) + 2x(R0(x)− g0(x))− 2λng0(x). (35)

Using the inverse Fourier transform to (34) and denoting P (y, τ) = 1√
2π

∫ +∞
−∞ e−jwyΦ(w, τ)dw, we

obtain that
∂P (y, τ)

∂τ
= − ∂

∂y

(
P (y, τ)ya′(x)

)
+

1

2

∂2

∂y2
(P (y, τ)b(x)),

which is Fokker–Planck equation for the probability distribution density P (y, τ) of diffusion pro-
cess y(τ), which is the solution of the stochastic differential equation

dy(τ) = y(τ)a∗(x)dτ +
√
b(x)dw(τ).

3.4. Result of Asymptotic-Diffusion Analysis

Combining the results of both asymptotics, we introduce process z(τ) = x(τ) +
√
σn × y(τ),

which is the solution of the stochastic equation

dz(τ) = a(z) +
√
σnb(z)dw(τ),

where w(τ) is Wiener process.
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The probability distribution density P (z, τ) of diffusion process z(τ) satisfies the Fokker–Planck
equation

∂P (z, τ)

∂τ
= − ∂

∂z
(P (z, τ)a(z)) +

1

2

∂2

∂z2
(P (z, τ)σnb(z)).

Then the stationary probabilities of process z(τ) are expressed as

P (z) =
C

b(z)
exp

⎛⎝σn
2

z∫
0

a(x)

b(x)
dx

⎞⎠ .

Returning to the study purpose, the result of the method of marginal asymptotic-diffusion
analysis is approximation of the probability distribution of process in(t) (the number of customers
of the nth class in the orbit) in the following form

P (in) ≈ C

b(σnin)
exp

⎛⎝σn
2

σnin∫
0

a(x)

b(x)
dx

⎞⎠ , (36)

where C = const is calculated from normalization condition
∑∞

in=0 P (in) = 1.

Note that formula (36) can be used for all classes marginal distributions, but it is worth remem-
bering that parameters a(x), b(x) in (22) and (35), as Rk(x), gk(x), φk(x) in (20) and (32)–(33)
will be different for each class.

Thus, the asymptotic marginal probability distribution of the number of the marked class cus-
tomers is dervied, that allows us to find all necessary characteristics of the system under the con-
sideration, for example, means of the number of customers of each class in the orbit mn = κn−λn,
the probability of the server downtime r0 according to formula (12), moments and quantile of the
desirable order, etc.

4. CONCLUSION

In the paper, a multiclass RQ system of Mn/GIn/1 type is studied. The original method
of the marginal asymptotic diffusion analysis is proposed. As the result, the expression for the
approximation of the probability distribution of the number of the marked class customers in the
orbit is obtained, that makes possible to assess any characteristics of the system. Note that the
study does not establish any criteria to mark the class, thus, the obtained formulas can be used
to calculate the marginal probability distribution of the number of each class customers. In future
research, the asymptotic results can be applied to modeling and optimizing real telecommunication
networks.
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